Protein reactivity of 3,4-dihydroxyphenylacetaldehyde, an endogenous, potential neurotoxin relevant to Parkinson's disease

نویسنده

  • Jennifer Nicole Rees
چکیده

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by two pathological hallmarks, selective loss of dopaminergic neurons and intraneuronal protein aggregation. The presence of an endogenous neurotoxin has been implicated in the pathogenesis of the disease, to explain the observed neurodegeneration. Dopamine (DA) has been indicated to be an endogenous neurotoxin as DA readily undergoes auto-oxidation to an o-quinone capable of protein modification. However, DA is metabolized by monoamine oxidase to form the intermediate 3,4-dihydroxyphenylacetaldehyde (DOPAL) and several studies have demonstrated DOPAL to be orders of magnitude more toxic than DA. An accumulation of DOPAL may cause dopaminergic cell death via the formation of free radicals, inhibition of the mitochondrial transition pore or protein modification. The hypothesis of this work is that DOPAL, a potential endogenous neurotoxin relevant to PD, is capable of protein modification and protein crosslinking through reactivity with amine and thiol nucleophiles. Results demonstrate that elevated DOPAL concentrations in striatal synaptosomes will yield considerable protein modification. In addition, DOPAL was demonstrated to be highly reactive towards amine nucleophiles in comparison to thiol nucleophiles. However, DOPAL was demonstrated to mediate protein cross-linking through reactivity with protein thiols subsequent to modification of amines, indicating DOPAL to be a bifunctional electrophile. Furthermore, a novel isolation procedure was developed, and through a proteomics-based approach, twelve proteins were identified to be relevant to PD and susceptible to DOPAL modification. This research demonstrates increased concentrations of DOPAL lead to significant cellular consequences (i.e. protein modification) and implicate DOPAL as a potential neurotoxin relevant to the pathogenesis of PD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidation and reactivity of 3,4-dihydroxyphenylacetaldehyde, a reactive intermediate of dopamine metabolism

Parkinson’s disease (PD) is a progressive neurodegenerative and movement disorder that involves specific loss of dopaminergic neurons in the substantia nigra of the brain. Exact causes of PD are unknown. However, cells affected in PD are centers of dopamine (DA) synthesis, storage, and metabolism, which implicate DA as an endogenous neurotoxin that contributes to PD. Furthermore, DA is known to...

متن کامل

Covalent modification and inhibition of tyrosine hydroxylase by 3,4-dihydroxyphenylacetaldehyde, an endogenously produced neurotoxin relevant to Parkinson's disease

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder which affects over a million people in the United States. This disease is marked by the selective loss of dopaminergic neurons in the substantia nigra, leading to a decrease in the important neurotransmitter dopamine (DA), which is essential for the initiation and execution of coordinated movement. Currently, the exact pathogene...

متن کامل

Nitrative and Oxidative Stress in Toxicology and Disease

Persistent inflammation and the generation of reactive oxygen and nitrogen species play pivotal roles in tissue injury during disease pathogenesis and as a reaction to toxicant exposures. The associated oxidative and nitrative stress promote diverse pathologic reactions including neurodegenerative disorders, atherosclerosis, chronic inflammation, cancer, and premature labor and stillbirth. Thes...

متن کامل

Comparison of Monoamine Oxidase Inhibitors in Decreasing Production of the Autotoxic Dopamine Metabolite 3,4-Dihydroxyphenylacetaldehyde in PC12 Cells.

According to the catecholaldehyde hypothesis, the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to the loss of nigrostriatal dopaminergic neurons in Parkinson's disease. Monoamine oxidase-A (MAO-A) catalyzes the conversion of intraneuronal dopamine to DOPAL and may serve as a therapeutic target. The "cheese effect"-paroxysmal hypertension evoked by tyramine-conta...

متن کامل

On the role of endogenous neurotoxins and neuroprotection in Parkinson's disease

For 50 years ago was introduced L-3,4-dihydroxyphenylalanine (L-dopa) in Parkinson's disease treatment and during this significant advances has been done but what trigger the degeneration of the nigrostriatal system remain unknown. There is a general agreement in the scientific community that mitochondrial dysfunction, protein degradation dysfunction, alpha-synuclein aggregation to neurotoxic o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016